3.9 \(\int \frac {1}{1-2 \coth ^2(x)} \, dx\)

Optimal. Leaf size=19 \[ \sqrt {2} \tanh ^{-1}\left (\frac {\tanh (x)}{\sqrt {2}}\right )-x \]

[Out]

-x+arctanh(1/2*2^(1/2)*tanh(x))*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3660, 3675, 206} \[ \sqrt {2} \tanh ^{-1}\left (\frac {\tanh (x)}{\sqrt {2}}\right )-x \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*Coth[x]^2)^(-1),x]

[Out]

-x + Sqrt[2]*ArcTanh[Tanh[x]/Sqrt[2]]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3660

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> Simp[x/(a - b), x] - Dist[b/(a - b), Int[Sec[e
 + f*x]^2/(a + b*Tan[e + f*x]^2), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a, b]

Rule 3675

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/(c^(m - 1)*f), Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)
^n)^p, x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n, p
] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps

\begin {align*} \int \frac {1}{1-2 \coth ^2(x)} \, dx &=-x-2 \int \frac {\text {csch}^2(x)}{1-2 \coth ^2(x)} \, dx\\ &=-x+2 \operatorname {Subst}\left (\int \frac {1}{1-2 x^2} \, dx,x,\coth (x)\right )\\ &=-x+\sqrt {2} \tanh ^{-1}\left (\frac {\tanh (x)}{\sqrt {2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 19, normalized size = 1.00 \[ \sqrt {2} \tanh ^{-1}\left (\frac {\tanh (x)}{\sqrt {2}}\right )-x \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*Coth[x]^2)^(-1),x]

[Out]

-x + Sqrt[2]*ArcTanh[Tanh[x]/Sqrt[2]]

________________________________________________________________________________________

fricas [B]  time = 0.63, size = 70, normalized size = 3.68 \[ \frac {1}{2} \, \sqrt {2} \log \left (-\frac {3 \, {\left (2 \, \sqrt {2} - 3\right )} \cosh \relax (x)^{2} - 4 \, {\left (3 \, \sqrt {2} - 4\right )} \cosh \relax (x) \sinh \relax (x) + 3 \, {\left (2 \, \sqrt {2} - 3\right )} \sinh \relax (x)^{2} + 2 \, \sqrt {2} - 3}{\cosh \relax (x)^{2} + \sinh \relax (x)^{2} + 3}\right ) - x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*coth(x)^2),x, algorithm="fricas")

[Out]

1/2*sqrt(2)*log(-(3*(2*sqrt(2) - 3)*cosh(x)^2 - 4*(3*sqrt(2) - 4)*cosh(x)*sinh(x) + 3*(2*sqrt(2) - 3)*sinh(x)^
2 + 2*sqrt(2) - 3)/(cosh(x)^2 + sinh(x)^2 + 3)) - x

________________________________________________________________________________________

giac [B]  time = 0.11, size = 38, normalized size = 2.00 \[ \frac {1}{2} \, \sqrt {2} \log \left (-\frac {2 \, \sqrt {2} - e^{\left (2 \, x\right )} - 3}{2 \, \sqrt {2} + e^{\left (2 \, x\right )} + 3}\right ) - x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*coth(x)^2),x, algorithm="giac")

[Out]

1/2*sqrt(2)*log(-(2*sqrt(2) - e^(2*x) - 3)/(2*sqrt(2) + e^(2*x) + 3)) - x

________________________________________________________________________________________

maple [A]  time = 0.08, size = 27, normalized size = 1.42 \[ \frac {\ln \left (\coth \relax (x )-1\right )}{2}-\frac {\ln \left (1+\coth \relax (x )\right )}{2}+\sqrt {2}\, \arctanh \left (\sqrt {2}\, \coth \relax (x )\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1-2*coth(x)^2),x)

[Out]

1/2*ln(coth(x)-1)-1/2*ln(1+coth(x))+2^(1/2)*arctanh(2^(1/2)*coth(x))

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 38, normalized size = 2.00 \[ -\frac {1}{2} \, \sqrt {2} \log \left (-\frac {2 \, \sqrt {2} - e^{\left (-2 \, x\right )} - 3}{2 \, \sqrt {2} + e^{\left (-2 \, x\right )} + 3}\right ) - x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*coth(x)^2),x, algorithm="maxima")

[Out]

-1/2*sqrt(2)*log(-(2*sqrt(2) - e^(-2*x) - 3)/(2*sqrt(2) + e^(-2*x) + 3)) - x

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 15, normalized size = 0.79 \[ \sqrt {2}\,\mathrm {atanh}\left (\sqrt {2}\,\mathrm {coth}\relax (x)\right )-x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-1/(2*coth(x)^2 - 1),x)

[Out]

2^(1/2)*atanh(2^(1/2)*coth(x)) - x

________________________________________________________________________________________

sympy [A]  time = 0.52, size = 34, normalized size = 1.79 \[ - x - \frac {\sqrt {2} \log {\left (\tanh {\relax (x )} - \sqrt {2} \right )}}{2} + \frac {\sqrt {2} \log {\left (\tanh {\relax (x )} + \sqrt {2} \right )}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-2*coth(x)**2),x)

[Out]

-x - sqrt(2)*log(tanh(x) - sqrt(2))/2 + sqrt(2)*log(tanh(x) + sqrt(2))/2

________________________________________________________________________________________